
System analysis and design –

Class-bba6th sem.

 System Implementation-

 system Implementation uses the structure created during architectural

design and the results of system analysis to construct system elements that meet the stakeholder
requirements and system requirements developed in the early life cycle phases. These system
elements are then integrated to form intermediate aggregates and finally the complete system-of-
interest (SoI). See System Integration.

Contents

 [hide]

 1Definition and Purpose

 2Process Approach

o 2.1Purpose and Principle of the Approach

o 2.2Activities of the Process

o 2.3Artifacts and Ontology Elements

o 2.4Methods, Techniques, and Tools

o 2.5Checking and Correctness of Implementation

 3References

o 3.1Works Cited

o 3.2Primary References

o 3.3Additional References

Definition and Purpose
Implementation is the process that actually yields the lowest-level system elements in the system
hierarchy (system breakdown structure). System elements are made, bought, or reused. Production
involves the hardware fabrication processes of forming, removing, joining, and finishing, the software
realization processes of coding and testing, or the operational procedures development processes for
operators' roles. If implementation involves a production process, a manufacturing system which uses
the established technical and management processes may be required.

The purpose of the implementation process is to design and create (or fabricate) a system element
conforming to that element’s design properties and/or requirements. The element is constructed
employing appropriate technologies and industry practices. This process bridges the system
definition processes and the integration process. Figure 1 portrays how the outputs of system definition
relate to system implementation, which produces the implemented (system) elements required to
produce aggregates and the SoI.

https://www.sebokwiki.org/wiki/Implementation_(glossary)
https://www.sebokwiki.org/wiki/Architecting_(glossary)
https://www.sebokwiki.org/wiki/Architecting_(glossary)
https://www.sebokwiki.org/wiki/System_Analysis
https://www.sebokwiki.org/wiki/System_Element_(glossary)
https://www.sebokwiki.org/wiki/Stakeholder_Requirement_(glossary)
https://www.sebokwiki.org/wiki/Stakeholder_Requirement_(glossary)
https://www.sebokwiki.org/wiki/System_Requirement_(glossary)
https://www.sebokwiki.org/wiki/Life_Cycle_(glossary)
https://www.sebokwiki.org/wiki/Aggregate_(glossary)
https://www.sebokwiki.org/wiki/System-of-Interest_(glossary)
https://www.sebokwiki.org/wiki/System-of-Interest_(glossary)
https://www.sebokwiki.org/wiki/System_Integration
https://www.sebokwiki.org/wiki/System_Implementation#Definition_and_Purpose
https://www.sebokwiki.org/wiki/System_Implementation#Process_Approach
https://www.sebokwiki.org/wiki/System_Implementation#Purpose_and_Principle_of_the_Approach
https://www.sebokwiki.org/wiki/System_Implementation#Activities_of_the_Process
https://www.sebokwiki.org/wiki/System_Implementation#Artifacts_and_Ontology_Elements
https://www.sebokwiki.org/wiki/System_Implementation#Methods.2C_Techniques.2C_and_Tools
https://www.sebokwiki.org/wiki/System_Implementation#Checking_and_Correctness_of_Implementation
https://www.sebokwiki.org/wiki/System_Implementation#References
https://www.sebokwiki.org/wiki/System_Implementation#Works_Cited
https://www.sebokwiki.org/wiki/System_Implementation#Primary_References
https://www.sebokwiki.org/wiki/System_Implementation#Additional_References
https://www.sebokwiki.org/wiki/System_Definition
https://www.sebokwiki.org/wiki/System_Definition

Figure 1. Simplification of How the Outputs of System Definition Relate to System Implementation, which

Produces the System Elements Required to Produce Systems and Subsystems. (SEBoK Original)

Process Approach
Purpose and Principle of the Approach

During the implementation process, engineers apply the design properties and/or requirements
allocated to a system element to design and produce a detailed description. They then fabricate, code,
or build each individual element using specified materials, processes, physical or logical arrangements,
standards, technologies, and/or information flows outlined in detailed descriptions (drawings or other
design documentation). A system element will be verified against the detailed description of properties
and validated against its requirements.

If subsequent verification and validation (V&V) actions or configuration audits reveal discrepancies,
recursive interactions occur, which includes predecessor activities or processes, as required, to mitigate
those discrepancies and to modify, repair, or correct the system element in question. Figure 2 provides
the context for the implementation process from the perspective of the U.S. Defense Acquisition
University (DAU).

Figure 2. Context Diagram for the Implementation Process (DAU 2010). Released by the Defense Acquisition

University (DAU)/U.S. Department of Defense (DoD).

Such figures provide a useful overview of the systems engineering (SE) community’s perspectives on
what is required for implementation and what the general results of implementation may be. These are
further supported by the discussion of implementation inputs, outputs, and activities found in the
National Aeronautics and Space Association's (NASA's) Systems Engineering Handbook (NASA 2007).

https://www.sebokwiki.org/wiki/Systems_Engineering_(glossary)
https://www.sebokwiki.org/wiki/File:SEBoKv05_KA-SystRealiz_how_outputs_of_Definition_relate_to_Implementation.png
https://www.sebokwiki.org/wiki/File:JS_Figure_5.png

It is important to understand that these views are process -oriented. While this is a useful model,
examining implementation only in terms of process can be limiting.

Depending on the technologies and systems chosen when a decision is made to produce a system
element, the implementation process outcomes may generate constraints to be applied on the
architecture of the higher-level system; those constraints are normally identified as derived system
requirements and added to the set of system requirements applicable to this higher-level system. The
architectural design has tomust take those constraints into account.

If the decision is made to purchase or reuse an existing system element, it has tomust be identified as a
constraint or system requirement applicable to the architecture of the higher-level system. Conversely,
the implementation process may involve some adaptation or adjustments to the system requirement in
order to be integrated into a higher-level system or aggregate.

Implementation also involves packaging, handling, and storage, depending on the concerned
technologies and where or when the system requirement needs to be integrated into a higher-level
aggregate. Developing the supporting documentation for a system requirement, such as the manuals
for operation, maintenance, and/or installation, is also a part of the implementation process; these
artifacts are utilized in the system deployment and use phase. The system element requirements and
the associated verification and validation criteria are inputs to this process; these inputs come from
the architectural design process detailed outputs.

Execution of the implementation process is governed by both industrial and government standards and
the terms of all applicable agreements. This may include conditions for packaging and storage, as well
as preparation for use activities, such as operator training. In addition, packaging, handling, storage,
and transportation (PHS&T) considerations will constrain the implementation activities. For more
information, refer to the discussion of PHS&T in the System Deployment and Use article. The
developing or integrating organization will likely have enterprise-level safety practices and guidelines
that must also be considered.

Activities of the Process

The following major activities and tasks are performed during this process:

 Define the implementation strategy - Implementation process activities begin with detailed
design and include developing an implementation strategy that defines fabrication and coding
procedures, tools and equipment to be used, implementation tolerances, and the means and
criteria for auditing configuration of resulting elements to the detailed design documentation. In the
case of repeated system element implementations (such as for mass manufacturing or replacement
elements), the implementation strategy is defined and refined to achieve consistent and repeatable
element production; it is retained in the project decision database for future use. The
implementation strategy contains the arrangements for packing, storing, and supplying the
implemented element.

 Realize the system element - Realize or adapt and produce the concerned system element using
the implementation strategy items as defined above. Realization or adaptation is conducted with
regard to standards that govern applicable safety, security, privacy, and environmental guidelines
or legislation and the practices of the relevant implementation technology. This requires the
fabrication of hardware elements, development of software elements, definition of training
capabilities, drafting of training documentation, and the training of initial operators and maintainers.

 Provide evidence of compliance - Record evidence that the system element meets its

requirements and the associated verification and validation criteria as well as the legislation policy.
This requires the conduction of peer reviews and unit testing, as well as inspection of operation and
maintenance manuals. Acquire measured properties that characterize the implemented element
(weight, capacities, effectiveness, level of performance, reliability, availability, etc.).

 Package, store, and supply the implemented element - This should be defined in the
implementation strategy.

https://www.sebokwiki.org/wiki/System_Deployment_and_Use
https://www.sebokwiki.org/wiki/Architecting_(glossary)
https://www.sebokwiki.org/wiki/System_Deployment_and_Use

Artifacts and Ontology Elements

This process may create several artifacts such as:

 an implemented system

 implementation tools

 implementation procedures

 an implementation plan or strategy

 verification reports

 issue, anomaly, or trouble reports

 change requests (about design)

This process handles the ontology elements shown in Table 1 below.

Table 1. Main Ontology Elements as Handled within System Element Implementation. (SEBoK

Original)

Element Definition

Attributes (examples)

Implemented

Element

An implemented element is a system element that has been implemented. In the

case of hardware it is marked with a part/serial number.

Identifier, name, description, type (hardware, software application, software
piece, mechanical part, electric art, electronic component, operator role,
procedure, protocol, manual, etc.)

Measured

Property

A measured property is a characteristic of the implemented element established

after its implementation. The measured properties characterize the implemented

system element when it is completely realized, verified, and validated. If the

implemented element complies with a design property, the measured property

should equal the design property. Otherwise one has tomust identify the

difference or non-conformance which treatment could conclude to modify the

design property and possibly the related requirements, or to modify (correct,

repair) the implemented element, or to identify a deviation.

Identifier, name, description, type (effectiveness, availability, reliability,
maintainability, weight, capacity, etc.), value, unit, etc.

The main relationships between ontology elements are presented in Figure 3.

Figure 3. Implementation Elements Relationships with Other Engineering Elements. (SEBoK Original)

Methods, Techniques, and Tools

There are many software tools available in the implementation and integration phases. The most basic
method would be the use of N-squared diagrams as discussed in Jeff Grady’s book System
Integration (Grady 1994).

Checking and Correctness of Implementation

Proper implementation checking and correctness should include testing to determine if the implemented
element (i.e., piece of software, hardware, or other product) works in its intended use. Testing could
include mockups and breadboards, as well as modeling and simulation of a prototype or completed
pieces of a system. Once this is completed successfully, the next process would be system integration.
ystem Implementation uses the structure created during architectural design and the results
of system analysis to construct system elements that meet the stakeholder
requirements and system requirements developed in the early life cycle phases. These system
elements are then integrated to form intermediate aggregates and finally the complete system-of-
interest (SoI). See System Integration.

Evaluation of software and hardware
All computers are made up of hardware, software and data. Specific types of hardware and software are used for particular tasks.

Software evaluation

Evaluation is performed to ensure the most suitable piece of software (or hardware) is purchased. Typically evaluation criteria will include:

https://www.sebokwiki.org/wiki/System_Integration
https://www.sebokwiki.org/wiki/Implementation_(glossary)
https://www.sebokwiki.org/wiki/Architecting_(glossary)
https://www.sebokwiki.org/wiki/System_Analysis
https://www.sebokwiki.org/wiki/System_Element_(glossary)
https://www.sebokwiki.org/wiki/Stakeholder_Requirement_(glossary)
https://www.sebokwiki.org/wiki/Stakeholder_Requirement_(glossary)
https://www.sebokwiki.org/wiki/System_Requirement_(glossary)
https://www.sebokwiki.org/wiki/Life_Cycle_(glossary)
https://www.sebokwiki.org/wiki/Aggregate_(glossary)
https://www.sebokwiki.org/wiki/System-of-Interest_(glossary)
https://www.sebokwiki.org/wiki/System-of-Interest_(glossary)
https://www.sebokwiki.org/wiki/System_Integration
https://www.sebokwiki.org/wiki/File:SEBoKv05_KA-SystRealiz_Implementation_relationships.png

 End user needs - what does the user of the software want to do, what are their present skills and how do they intend to use the software? It
is important to be very clear about the problem that is to be tackled by the software. For example, a disabled person who wants to write letters
but cannot type might strongly consider software with lots of ready-made letter templates that can then be added to using voice recognition.

 Functionality - does the software perform the functions required? Does it have specific facilities? For example, someone buying
a spreadsheet application might need to produce graphs and charts.

 Performance - how well does the software work? This is normally available as benchmark test reports where independent tests have been
carried out using the software.

 Ease of use - how easy is the software to use? Is there built-in help? It is important to be happy with the user interface.

 Compatibility with existing data - will the new software be able to read any data that is already in use, ie in a different format or file type? If
not, is it easy to convert existing files to a readable format?

 Compatibility with existing hardware - software is written to run on a specific operating system, eg Windows, OSX (Macs) or Linux. It is
sometimes written to run on and take advantage of specific hardware too. The new software needs to be compatible with the existing
operating system and hardware.

 Robustness - how does the software handle problems? Robust software works well in combination with different hardware and software
without crashing.

 Cost - costs have to be weighed against the benefits that the software will bring. These may be about making more money or doing
something quickly or with fewer staff hours involved. Price doesn't always dictate the best piece of software for the job, ie just because it's
more expensive it doesn't necessarily means it's better.

 Support - the level of support when using the software can be crucial to making it a success or failure. Is a telephone or web based helpdesk
available for the software? Are there any tutorials or training courses available?

 Customisation - will the software allow users to change the look and feel so that it does exactly what they need? If so, is this easy to do?

Home > Articles

Technical Infrastructure and Operational Practices

and Infrastructure
 By Allen Keele and Keith Mortier

 Apr 4, 2005

📄 Contents

␡

1. IT Organizational Structure
2. Evaluating Hardware Acquisition, Installation, and Maintenance
3. Evaluating Systems Software Development, Acquisition, Implementation, and Maintenance
4. Evaluating Network Infrastructure Acquisition, Installation, and Maintenance
5. The TCP/IP Protocol Suite

6. Routers
7. Internet, Intranet, and Extranet
8. Evaluating IS Operational Practices
9. Evaluating the Use of System Performance and Monitoring Processes, Tools, and Techniques
10. Exam Prep Questions

 ⎙ Print

 + Share This

< Back Page 2 of 10 Next >

This chapter is from the book

https://www.pearsonitcertification.com/
https://www.pearsonitcertification.com/articles/index.aspx
https://www.pearsonitcertification.com/articles/article.aspx?p=381381
https://www.pearsonitcertification.com/articles/article.aspx?p=381381
https://www.pearsonitcertification.com/authors/bio/e4d24ef0-7d27-4fa2-8ca4-92dc5b603240
https://www.pearsonitcertification.com/authors/bio/b4ad9848-b805-47d0-9120-5fb9f3a61edc
https://www.pearsonitcertification.com/articles/article.aspx?p=381381&seqNum=2
https://www.pearsonitcertification.com/articles/article.aspx?p=381381&seqNum=2
https://www.pearsonitcertification.com/articles/article.aspx?p=381381
https://www.pearsonitcertification.com/articles/article.aspx?p=381381&seqNum=3
https://www.pearsonitcertification.com/articles/article.aspx?p=381381&seqNum=4
https://www.pearsonitcertification.com/articles/article.aspx?p=381381&seqNum=5
https://www.pearsonitcertification.com/articles/article.aspx?p=381381&seqNum=6
https://www.pearsonitcertification.com/articles/article.aspx?p=381381&seqNum=7
https://www.pearsonitcertification.com/articles/article.aspx?p=381381&seqNum=8
https://www.pearsonitcertification.com/articles/article.aspx?p=381381&seqNum=9
https://www.pearsonitcertification.com/articles/article.aspx?p=381381&seqNum=10
https://www.pearsonitcertification.com/articles/printerfriendly/381381
http://www.addthis.com/bookmark.php
https://www.pearsonitcertification.com/articles/article.aspx?p=381381
https://www.pearsonitcertification.com/articles/article.aspx?p=381381&seqNum=3
https://www.pearsonitcertification.com/articles/article.aspx?p=381381&seqNum=2

This chapter is from the book

CISA Exam Cram: Certified Information Systems Auditor

Learn More Buy

This chapter is from the book

CISA Exam Cram: Certified Information Systems Auditor

Learn More Buy

Evaluating Hardware Acquisition, Installation, and Maintenance

A significant part of the information architecture is the computing hardware. These systems include the following:

 Processing components—The central processing unit (CPU). The CPU contains the electrical/electronic

components that control or direct all operations in the computer system. A majority of devices within the

information architecture are CPUs (supercomputers, mainframes, minicomputer, microcomputer, laptops,

and PDAs).

 Input/output components—The I/O components are used to pass instructions or information to the

computer and to generate output from the computer. These types of devices include the keyboard, the

mouse (input), and monitors/terminal displays.

Computers logically fall into categories and differ depending on the processing power and size for the

organization. The following are the basic categories for computers:

 Supercomputers—These types of computers have a large capacity of processing speed and power. They

are generally used for complex mathematical calculations. Supercomputers generally perform a small

number of very specific functions that require extensive processing power (decryption, modeling, and so on).

Supercomputers differ from mainframes in that mainframes can use diverse concurrent programs.

 Mainframes—Mainframes are large general-purpose computers that support large user populations

simultaneously. They have a large range of capabilities that are controlled by the operating system. A

mainframe environment, as opposed to a client/server environment, is generally more controlled with regard

https://www.pearsonitcertification.com/store/cisa-exam-cram-certified-information-systems-auditor-9780789732729?w_ptgrevartcl=Technical+Infrastructure+and+Operational+Practices+and+Infrastructure_381381
https://www.pearsonitcertification.com/store/cisa-exam-cram-certified-information-systems-auditor-9780789732729?w_ptgrevartcl=Technical+Infrastructure+and+Operational+Practices+and+Infrastructure_381381
https://www.pearsonitcertification.com/buy.aspx?isbn=9780789732729&w_ptgrevartcl=Technical+Infrastructure+and+Operational+Practices+and+Infrastructure_381381
https://www.pearsonitcertification.com/store/cisa-exam-cram-certified-information-systems-auditor-9780789732729?w_ptgrevartcl=Technical+Infrastructure+and+Operational+Practices+and+Infrastructure_381381
https://www.pearsonitcertification.com/store/cisa-exam-cram-certified-information-systems-auditor-9780789732729?w_ptgrevartcl=Technical+Infrastructure+and+Operational+Practices+and+Infrastructure_381381
https://www.pearsonitcertification.com/buy.aspx?isbn=9780789732729&w_ptgrevartcl=Technical+Infrastructure+and+Operational+Practices+and+Infrastructure_381381
https://www.pearsonitcertification.com/store/cisa-exam-cram-certified-information-systems-auditor-9780789732729?w_ptgrevartcl=Technical+Infrastructure+and+Operational+Practices+and+Infrastructure_381381
https://www.pearsonitcertification.com/store/cisa-exam-cram-certified-information-systems-auditor-9780789732729?w_ptgrevartcl=Technical+Infrastructure+and+Operational+Practices+and+Infrastructure_381381

to access and authorization to programs; the entire processing function takes place centrally on the

mainframe. Mainframes are multiuser, multithreading, and multiprocessing environments that can support

batch and online programs.

 Minicomputer—Minicomputers are essentially smaller mainframes. They provide similar capabilities but

support a smaller user population (less processing power).

 Microcomputer (personal computers)—Microcomputers are primarily used in the client/server

environment. Examples include file/print servers, email servers, web servers, and servers that house

database- management systems. Individual workstations also fall into the microcomputer category and are

used for word processing, spreadsheet applications, and individual communications (email). Microcomputers

are generally inexpensive because they do not have the processing power of larger minicomputers or

mainframes.

 Notebook/laptop computers—Notebook and laptop computers are portable and allow users to take the

computing power, applications, and, in some cases, data with them wherever they travel. Notebooks and

laptops today have as much computing power as desktop workstations and provide battery power when

traditional power is not available. Because of the mobile nature of notebook and laptop computers, they are

susceptible to theft. Theft of a laptop computer is certainly the loss of a physical asset, but it also can include

the loss of data or unauthorized access to the organization's information resources.

 Personal digital assistants (PDAs)—PDAs are handheld devices and generally have significantly less

processing power, memory, and applications than notebook computers. These devices are battery powered

and very portable (most can fit into a jacket pocket). Although the traditional use of a PDA is for individual

organization, including the maintenance of tasks, contacts lists, calendars, and expense managers, PDAs

are continually adding functionality. As of this writing, a significant number of PDAs provide wireless network

access and have either commercial off-the-shelf software or custom software that enables users to access

corporate information (sales and inventory, email, and so on). Most PDAs use pen (stylus)–based input

instead of the traditional keyboard, effected by using either an onscreen keyboard or handwriting recognition.

PDAs are synchronized with laptop/desktop computers through serial interfaces through the use of a cradle

or wireless networking (802.11 or Bluetooth). The synchronization can be user initiated or automated, based

on the needs of the user.

Earlier in this section, we discussed some of the attributes of computing systems, including multiprocessing,

multitasking, and multithreading. These attributes are defined as follows:

 Multitasking—Multitasking allows computing systems to run two or more applications concurrently. This

process enables the systems to allocate a certain amount of processing power to each application. In this

instance, the tasks of each application are completed so quickly that it appears to multiple users that there

are no disruptions in the process.

 Multiprocessing—Multiprocessing links more than one processor (CPU) sharing the same memory, to

execute programs simultaneously. In today's environment, many servers (mail, web, and so on) contain

multiple processors, allowing the operating system to speed the time for instruction execution. The operating

system can break up a series of instructions and distribute them among the available processors, effecting

quicker instruction execution and response.

 Multithreading—Multithreading enables operating systems to run several processes in rapid sequence

within a single program or to execute (run) different parts, or threads, of a program simultaneously. When a

process is run on a computer, that process creates a number of additional tasks and subtasks. All the

threads (tasks and subtasks) can run at one time and combine as a rope (entire process). Multithreading can

be defined as multitasking within a single program.

Risks and Controls Relating to Hardware Platforms

In aligning the IT strategy with the organizational strategy, IT provides solutions that meet the objectives of the

organization. These solutions must be identified, developed, or acquired. As an IS auditor, you will assess this

process by reviewing control issues regarding the acquisition, implementation, and maintenance of hardware.

Governance of the IT organization and corresponding policies will reduce the risk associated with acquisition,

implementation, and maintenance. Configuration management accounts for all IT components, including software.

A comprehensive configuration-management program reviews, approves, tracks, and documents all changes to

the information architecture. Configuration of the communications network is often the most critical and time-

intensive part of network management as a whole. Software development project management involves

scheduling, resource management, and progress tracking. Problem management records and monitors incidents

and documents them through resolution. The documentation created during the problem-management process

can identify inefficient hardware and software, and can be used as a basis for identifying acquisition opportunities

that serve the business objectives. Risk management is the process of assessing risk, taking steps to reduce risk

to an acceptable level (mitigation) and maintaining that acceptable level of risk. Risk identification and

management works across all areas of the organizational and IT processes.

CAUTION

A configuration-management audit should always verify software licensing for authorized use.

The COBIT framework provides hardware policy areas for IT functions. These policy areas can be used as a basis

for control objectives to ensure that the acquisition process is clearly defined and meets the needs of the

organization. The COBIT areas address the following questions:

 Acquisition—How is hardware acquired from outside vendors?

 Standards—What are the hardware compatibility standards?

 Performance—How should computing capabilities be tested?

 Configuration—Where should client/servers, personal computers, and others be used.

 Service providers—Should third-party service providers be used?

One of the key challenges facing IT organizations today is the speed of new technology releases in the

marketplace and detailed baseline documentation for their organizations. IT organizations need a process for

documenting existing hardware and then maintaining that documentation. This documentation supports the

acquisition process and ensures that new technologies that meet the business objectives can be thoroughly tested

to ensure that they are compatible with the existing information architecture.

Contained within the COBIT framework regarding hardware and software acquisition, the auditor will consider the

control objectives defined in Table 3.1.

Table 3.1 Acquisition Control Objectives

Identify Automated

Solutions

Control Objective

1.1 Definition of

Information

Requirements

The organization’s system development life cycle methodology should require that the business

requirements for the existing system and the proposed new or modified system (software, data,

and infrastructure) are clearly defined before a development, implementation, or modification

project is approved. The system development life cycle methodology should specify the solution’s

functional and operational requirements, including perfor-mance, safety, reliability, compatibility,

security, and legislation.

1.2 Formulation of

Alternative Courses

of Action

The organization’s system development life cycle should stipulate that alternative courses of

action should be analyzed to satisfy the business requirements established for a proposed new or

modified system.

1.3 Formulation of

Acquisition Strategy

Information systems acquisition, development, and maintenance should be considered in the

context of the organization’s IT long- and short-range plans. The organization’s system

development life cycle methodology should provide for a software acquisition strategy plan

defining whether the software will be acquired off-the-shelf; developed internally, through

contract, or by enhancing the existing software; or developed through a combination of these.

1.4 Third-Party

Service

Requirements

The organization’s system development life cycle methodology should require an evaluation of

the requirements and specifications for an RFP (request for proposal) when dealing with a third-

party ser-vice vendor.

1.5 Technological

Feasibility Study

The organization’s system development life cycle methodology should require an examination of

the technological feasibility of each alternative for satisfying the business requirements

established for the development of a proposed new or modified information system project.

1.6 Economic

Feasibility Study

In each proposed information systems development, implementation, and modification project, the

organization’s system development life cycle methodology should require an analysis of the costs

and benefits associated with each alternative being considered for satisfying the established

business requirements.

1.7 Information

Architecture

Management should ensure that attention is paid to the enterprise data model while solutions are

being identified and analyzed for feasibility.

1.8 Risk Analysis

Report

In each proposed information system development, implementation, or modification project, the

organization’s system development life cycle methodology should require an analysis and

documentation of the security threats, potential vulnerabilities and impacts, and the feasible

security and internal control safeguards for reducing or eliminating the identified risk. This should

be realized in line with the overall risk-assessment framework.

1.9 Cost-Effective

Security Controls

Management should ensure that the costs and benefits of security are carefully examined in

monetary and nonmonetary terms, to guarantee that the costs of controls do not exceed benefits.

The decision requires formal management sign-off. All security requirements should be identified

at the requirements phase of a project and should be justified, agreed to, and documented as part

of the overall business case for an information system. Security requirements for business

continuity management should be defined to ensure that the proposed solution supports the

planned activation, fallback, and resumption processes.

1.10 Audit Trails

Design

The organization’s system development life cycle methodology should state that adequate

mechanisms for audit trails must be available or developed for the solution identified and selected.

The mechanisms should provide the capability to protect sensitive data (for example, user IDs)

against discovery and misuse.

1.11 Ergonomics Management should ensure that the IT function adheres to a standard procedure for identifying all

potential system software programs, to satisfy its operational requirements.

1.13 Procurement

Control

Management should develop and implement a central procurement approach describing a

common set of procedures and standards to be followed in the procurement of information

technology–related hardware, software, and services. Products should be reviewed and tested

before their use and the financial settlement.

1.14 Software

Product Acquisition

Software product acquisition should follow the organization’s procurement policies.

1.15 Third-Party

Software

Maintenance

Management should require that before licensed software is acquired from third-party providers,

the providers have appropriate procedures to validate, protect, and maintain the software product’s

integrity rights. Consideration should be given to the support of the product in any maintenance

agreement related to the delivered product.

1.16 Contract

Application

Programming

The organization’s system development life cycle methodology should require that the

procurement of contract programming services be justified with a written request for services

from a designated member of the IT function. The contract should stipulate that the software,

documentation, and other deliverables are subject to testing and review before acceptance. In

addition, it should require that the end products of completed contract programming services be

tested and reviewed according to the related standards by the IT function’s quality assurance

group and other concerned parties (such as users and project managers) before payment for the

work and approval of the end product. Testing to be included in contract specifications should

consist of system testing, integration testing, hardware and component testing, procedure testing,

load and stress testing, tuning and performance testing, regression testing, user acceptance testing,

and, finally, pilot testing of the total system, to avoid any unexpected system failure.

1.17 Acceptance of

Facilities

Management should ensure that an acceptance plan for facilities to be provided is agreed upon

with the supplier in the contract. This plan should define the acceptance procedures and criteria. In

addition, acceptance tests should be performed to guarantee that the accommodation and

environment meet the requirements specified in the contract.

1.18 Acceptance of

Technology

Management should ensure that an acceptance plan for specific technology to be provided is

agreed upon with the supplier in the contract. This plan should define the acceptance procedures

and criteria. In addition, acceptance tests provided for in the plan should include inspection,

functionality tests, and workload trials.

The selection of computer hardware requires the organization to define specifications for outside vendors. These

specifications should be used in evaluating vendor-proposed solutions. This specification is sometimes called

an invitation to tender (ITT) or a request for proposal (RFP).

Per ISACA, the portion of the ITT pertaining to hardware should include the following:

 Information-processing requirements

 Major existing application systems and future application systems

 Workload and performance requirements

 Processing approaches (online/batch, client/server, real-time databases, continuous operation)

 Hardware requirements

 CPU speed

 Peripheral devices (sequential devices, such as tape drives; direct-access devices, such as magnetic

disk drives, printers, CD-ROM drives, and WORM drives)

 Data-preparation/input devices that accept and convert data for machine processing

 Direct-entry devices (terminal, point-of-sale terminals, or automated teller machines)

 Networking capability (Ethernet connections, modems, and ISDN connections)

 System software applications

 Operation systems software (current version and any required upgrades)

 Compilers

 Program library software

 Database-management software and programs

 Communication software

 Access-control software

 Support requirements

 System maintenance (for preventative, detective [fault reporting], or corrective purposes)

 Training (user and technical staff)

 Backups (daily and disaster)

 Adaptability requirements

 Hardware/software upgrade capabilities

 Compatibility with existing hardware/software platforms

 Changeover to other equipment capabilities

 Constraints

 Existing hardware capacity

 Deliver dates

 Conversion requirements

 Test time for the hardware/software

 System-conversion facilities

 Cost/pricing schedule

The acquisition of hardware might be driven by requirements for a new software acquisition, the expansion of

existing capabilities, or the scheduled replacement of obsolete hardware. With all these events, senior

management must ensure that the acquisition is mapped directly to the strategic goals of the organization. The IT

steering committee should guide information systems strategy—and, therefore, that its acquisitions—align with the

organization's goals.

In addition, the senior managers of the IT steering committee should receive regular status updates on acquisition

projects in progress, the cost of projects, and issues that impact the critical path of those projects. The IT steering

committee is responsible for reviewing issues such as new and ongoing projects, major equipment acquisitions,

and the review and approval of budget; however, the committee does not usually get involved in the day-to-day

operations of the IS department.

The IT organization should have established policies for all phases of the system development life cycle (SDLC)

that controls the acquisition, implementation, maintenance, and disposition of information systems. The SDLC

should include computer hardware, network devices, communications systems, operating systems, application

software, and data. These systems support mission-critical business functions and should maximize the

organization’s return on investment. The combination of a solid governance framework and defined acquisition

process creates a control infrastructure that reduces risk and ensures that IT infrastructure supports the business

functions.

As an IS auditor, you will look for evidence of a structured approach to hardware acquisition, implementation, and

maintenance. These include written acquisition policies and outline the process for feasibility studies, requirements

gathering, and the approval process of the IT steering committee. After hardware is procured, the IT organization

must have a defined project-management and change-control process to implement the hardware. All hardware

acquired must fall under existing maintenance contracts and procedures, or contracts must be acquired and

procedures updated to reflect the new hardware. The hardware should be tested according to written test plans

before going into production, and the hardware should be assigned to the appropriate functional areas (such as

systems administration) to ensure that production responsibility is clearly defined. The acquired hardware, whether

a replacement or new to the IT infrastructure, should be secured (physical, logical) and added to the business

continuity plan.

Change Control and Configuration Management Principles for Hardware

The change-control and configuration-management processes detail the formal documented procedures for

introducing technology changes into the environment. More specifically, change control ensures that changes are

documented, approved, and implemented with minimum disruption to the production environment and maximum

benefits to the organization.

During the normal operation of the IT infrastructure, there will be changes to hardware and software because of

normal maintenance, upgrades, security patches, and changes in network configurations. All changes within the

infrastructure need to be documented and must follow change control procedures. In the planning stages the party

responsible for the changes (such as end users, line managers or the network administrator) should develop a

change-control request. The request should include all systems affected by the change, the length of resources

required to implement the change (time and money), and a detailed plan. The plan should include what specific

steps will be taken for the change and should include test plans and back-out procedures, in case the change

adversely affects the infrastructure. This request should go before the change-control board that votes on the

change and normally provides a maintenance window in which the change is to be implemented. When the

change is complete and tested, all documentation and procedures that are affected by the change should be

updated. The change-control board should maintain a copy of the change request and its review of the

implementation of the change.

What is Software Testing? Introduction,
Definition, Basics & Types –

 What is Software Testing?

 What is Software Testing?

SOFTWARE TESTING is defined as an activity to check whether the actual
results match the expected results and to ensure that the software system
is Defect free. It involves execution of a software component or system
component to evaluate one or more properties of interest.Software testing also
helps to identify errors, gaps or missing requirements in contrary to the actual
requirements. It can be either done manually or using automated tools. Some
prefer saying Software testing as a White Box and Black Box Testing.

 Why is Software Testing Important?

Testing is important because software bugs could be expensive or even dangerous. Software bugs

can potentially cause monetary and human loss, and history is full of such examples.

 In April 2015, Bloomberg terminal in London crashed due to software glitch affected more than
300,000 traders on financial markets. It forced the government to postpone a 3bn pound debt sale.

 Nissan cars have to recall over 1 million cars from the market due to software failure in the airbag
sensory detectors. There has been reported two accident due to this software failure.

 Starbucks was forced to close about 60 percent of stores in the U.S and Canada due to software
failure in its POS system. At one point store served coffee for free as they unable to process the
transaction.

 Some of the Amazon’s third party retailers saw their product price is reduced to 1p due to a
software glitch. They were left with heavy losses.

 Vulnerability in Window 10. This bug enables users to escape from security sandboxes through a
flaw in the win32k system.

 In 2015 fighter plane F-35 fell victim to a software bug, making it unable to detect targets correctly.
 China Airlines Airbus A300 crashed due to a software bug on April 26, 1994, killing 264 innocent live

https://www.guru99.com/defect-management-process.html
https://www.guru99.com/white-box-testing.html
https://www.guru99.com/black-box-testing.html

 In 1985, Canada's Therac-25 radiation therapy machine malfunctioned due to software bug and
delivered lethal radiation doses to patients, leaving 3 people dead and critically injuring 3 others.

 In April of 1999, a software bug caused the failure of a $1.2 billion military satellite launch, the
costliest accident in history

 In may of 1996, a software bug caused the bank accounts of 823 customers of a major U.S. bank to
be credited with 920 million US dollars.

Types of Software Testing

Typically Testing is classified into three categories.

 Functional Testing
 Non-Functional Testing or Performance Testing
 Maintenance (Regression and Maintenance)

Testing Category Types of Testing

Functional Testing  Unit Testing

 Integration Testing

 Smoke

 UAT (User Acceptance Testing)

 Localization

 Globalization

 Interoperability

 So on

Non-Functional Testing  Performance

 Endurance

 Load

 Volume

https://www.guru99.com/performance-testing.html
https://www.guru99.com/unit-testing-guide.html
https://www.guru99.com/integration-testing.html

 Scalability

 Usability

 So on

Maintenance  Regression

 Maintenance

This is not the complete list as there are more than 150 types of testing types and still adding. Also,

note that not all testing types are applicable to all projects but depend on the nature & scope of the

project.

 Next

YOU MIGHT LIKE:

SOFTWARE TESTING

What is Spike Testing? Learn With Example

What is Spike Testing? SPIKE TESTING is defined as a type of performance testing in which...

Read more

SDLC

https://www.guru99.com/types-of-software-testing.html
https://www.guru99.com/software-testing-career-complete-guide.html
https://www.guru99.com/spike-testing.html
https://www.guru99.com/spike-testing.html
https://www.guru99.com/spike-testing.html
https://www.guru99.com/mvc-tutorial.html
https://www.guru99.com/spike-testing.html
https://www.guru99.com/mvc-tutorial.html

MVC Tutorial for Beginners: What is, Architecture & Example

What is MVC Framework? The Model-View-Controller (MVC) framework is an architectural

pattern that...

Read more

SOFTWARE TESTING

15 BEST Test Data Generation Tools in 2020

Test data generation is the process of making sample test data used in executing test cases. There

are...

Read more

AGILE TESTING

Scrum Vs. Kanban: Know the Difference

What is Scrum? Scrum is an agile process that helps to deliver the business value in the shortest

time....

Read more

SOFTWARE TESTING

https://www.guru99.com/mvc-tutorial.html
https://www.guru99.com/mvc-tutorial.html
https://www.guru99.com/mvc-tutorial.html
https://www.guru99.com/test-data-generation-tools.html
https://www.guru99.com/test-data-generation-tools.html
https://www.guru99.com/test-data-generation-tools.html
https://www.guru99.com/scrum-vs-kanban.html
https://www.guru99.com/scrum-vs-kanban.html
https://www.guru99.com/scrum-vs-kanban.html
https://www.guru99.com/difference-automated-vs-manual-testing.html
https://www.guru99.com/test-data-generation-tools.html
https://www.guru99.com/scrum-vs-kanban.html
https://www.guru99.com/difference-automated-vs-manual-testing.html

Automation Testing Vs. Manual Testing: What’s the Difference?

What is Manual Testing? Manual testing is testing of the software where tests are executed...

Read more

SDLC

10 Best Programming Language to Learn in 2020

With time old programming languages become obsolete while new programming languages are

launched,...

Read more

Testing Tutorials



 Next

YOU MIGHT LIKE:

https://www.guru99.com/difference-automated-vs-manual-testing.html
https://www.guru99.com/difference-automated-vs-manual-testing.html
https://www.guru99.com/difference-automated-vs-manual-testing.html
https://www.guru99.com/best-programming-language.html
https://www.guru99.com/best-programming-language.html
https://www.guru99.com/best-programming-language.html
https://www.guru99.com/software-testing-career-complete-guide.html
https://www.guru99.com/best-programming-language.html

SOFTWARE TESTING

What is Spike Testing? Learn With Example

What is Spike Testing? SPIKE TESTING is defined as a type of performance testing in which...

Read more

SDLC

MVC Tutorial for Beginners: What is, Architecture & Example

What is MVC Framework? The Model-View-Controller (MVC) framework is an architectural

pattern that...

Read more

SOFTWARE TESTING

15 BEST Test Data Generation Tools in 2020

Test data generation is the process of making sample test data used in executing test cases. There

are...

Read more

https://www.guru99.com/spike-testing.html
https://www.guru99.com/spike-testing.html
https://www.guru99.com/spike-testing.html
https://www.guru99.com/mvc-tutorial.html
https://www.guru99.com/mvc-tutorial.html
https://www.guru99.com/mvc-tutorial.html
https://www.guru99.com/test-data-generation-tools.html
https://www.guru99.com/test-data-generation-tools.html
https://www.guru99.com/test-data-generation-tools.html
https://www.guru99.com/spike-testing.html
https://www.guru99.com/mvc-tutorial.html
https://www.guru99.com/test-data-generation-tools.html

AGILE TESTING

Scrum Vs. Kanban: Know the Difference

What is Scrum? Scrum is an agile process that helps to deliver the business value in the shortest

time....

Read more

SOFTWARE TESTING

Automation Testing Vs. Manual Testing: What’s the Difference?

What is Manual Testing? Manual testing is testing of the software where tests are executed...

Read more

SDLC

10 Best Programming Language to Learn in 2020

With time old programming languages become obsolete while new programming languages are

launched,...

Data-flow diagram -

https://www.guru99.com/scrum-vs-kanban.html
https://www.guru99.com/scrum-vs-kanban.html
https://www.guru99.com/scrum-vs-kanban.html
https://www.guru99.com/difference-automated-vs-manual-testing.html
https://www.guru99.com/difference-automated-vs-manual-testing.html
https://www.guru99.com/difference-automated-vs-manual-testing.html
https://www.guru99.com/best-programming-language.html
https://www.guru99.com/best-programming-language.html
https://www.guru99.com/scrum-vs-kanban.html
https://www.guru99.com/difference-automated-vs-manual-testing.html
https://www.guru99.com/best-programming-language.html

Data flow diagram with data storage, data flows, function and interface

A data-flow diagram (DFD) is a way of representing a flow of a data of a process or a system (usually
an information system). The DFD also provides information about the outputs and inputs of each entity
and the process itself. A data-flow diagram has no control flow, there are no decision rules and no
loops. Specific operations based on the data can be represented by a flowchart.[1]

Data Dictionary

Definition - What does Data Dictionary mean?

A data dictionary is a file or a set of files that contains a database's metadata. The data
dictionary contains records about other objects in the database, such as data ownership,
data relationships to other objects, and other data.

The data dictionary is a crucial component of any relational database. Ironically, because
of its importance, it is invisible to most database users. Typically, only database
administrators interact with the data dictionary.

https://en.wikipedia.org/wiki/Process
https://en.wikipedia.org/wiki/Information_system
https://en.wikipedia.org/wiki/Flowchart
https://en.wikipedia.org/wiki/Data-flow_diagram#cite_note-:0-1
https://en.wikipedia.org/wiki/File:Data-flow-diagram-example.svg

	Class-bba6th sem.
	System Implementation-
	Contents
	Definition and Purpose
	Process Approach
	Purpose and Principle of the Approach
	Activities of the Process
	Artifacts and Ontology Elements
	Methods, Techniques, and Tools
	Checking and Correctness of Implementation

	Evaluation of software and hardware

	Software evaluation
	Technical Infrastructure and Operational Practices and Infrastructure
	This chapter is from the book
	This chapter is from the book (1)
	Evaluating Hardware Acquisition, Installation, and Maintenance
	Risks and Controls Relating to Hardware Platforms
	Table 3.1 Acquisition Control Objectives

	Change Control and Configuration Management Principles for Hardware

	What is Software Testing? Introduction, Definition, Basics & Types –
	What is Software Testing?
	What is Software Testing? (1)
	Why is Software Testing Important?
	Types of Software Testing
	SOFTWARE TESTING
	What is Spike Testing? Learn With Example
	SDLC

	MVC Tutorial for Beginners: What is, Architecture & Example
	SOFTWARE TESTING

	15 BEST Test Data Generation Tools in 2020
	AGILE TESTING

	Scrum Vs. Kanban: Know the Difference
	SOFTWARE TESTING

	Automation Testing Vs. Manual Testing: What’s the Difference?
	SDLC

	10 Best Programming Language to Learn in 2020
	Testing Tutorials
	SOFTWARE TESTING
	What is Spike Testing? Learn With Example
	SDLC

	MVC Tutorial for Beginners: What is, Architecture & Example
	SOFTWARE TESTING

	15 BEST Test Data Generation Tools in 2020
	AGILE TESTING

	Scrum Vs. Kanban: Know the Difference
	SOFTWARE TESTING

	Automation Testing Vs. Manual Testing: What’s the Difference?
	SDLC

	10 Best Programming Language to Learn in 2020

	Data-flow diagram -
	Data Dictionary
	Definition - What does Data Dictionary mean?

