CHEMISTRY

NOMENCLATURE

Achiever's Comprehensive Course (ACC)

DDR COLLEGE OF PHARMACY

	Topic	Page No.
	ORGANIC CHEMISTRY	
	<u>NOMENCLATURE</u>	1
1.	Common Name	01
2.	Derived System	14
3.	Nomenclature of Saturated unbranched hydrocarbon	17
4	Nomenclature of Saturated branched hydrocarbon	18
5.	Nomenclature of Unsaturated unbranched hydrocarbon	22
6.	Nomenclature of Unsaturated branched hydrocarbon	23
7.	Nomenclature of Functional group compounds	26
8.	Nomenclature of Polyfunctional group compounds	32
9.	Nomenclature of Alicyclic/Cyclic compounds	39
10.	Nomenclature of Bicyclo compounds	41
11.	Nomenclature of Spiro compounds	42
12.	Exercise - 1	46
	Exercise - 2	53
	Exercise - 3	58
	Exercise - 4	61
13.	Answer Key	63
14.	Hints/Solution	64
	NOMENCLATURE	
	✓	
\ \\Y		
Y		

NOMENCLATURE OF ORGANIC COMPOUNDS

Mainly three systems are adopted for naming an organic compound : –

- (i) Common Names or Trivial System
- (ii) Derived System
- (iii) IUPAC system or Geneva System

COMMON OR TRIVIAL SYSTEM

(i) On the basis of source from which they were obtained.

S.No.	Organic Compound	Trivial Name	Source
1.	CH ₃ OH	Wood spirit or Methyl spirit	Obtained by destructive distillation of wood.
2.	NH ₂ CONH ₂	Urea	Obtained from urine
3.	CH ₄	Marsh gas (fire damp)	It was produced in marsh places.
4.	CH ₃ COOH	Vinegar	Obtained from Acetum - i.e. Vinegar
5.	COOH	Oxalic acid	Obtained from oxalis plant.
6.	СООН	Formic acid	Obtained from formicus [Red ant]
7.	СН ₃ – СН – СООН ОН	Lactic acid	Obtained from lactous (milk)
8.	СН ₂ – СООН СН(ОН)СООН	Malic acid	Obtain from Apple
9	CH ₃ CH ₂ CH ₂ COOH	Butyric acid	Obtained from butter.
10.	CH ₃ (CH ₂) ₄ COOH	Caproic acid	Obtained from goats.
11.	C ₂ H ₅ OH	Grain alcohol	Obtained from barley.

(ii) On the basis of property

- 1. Glucose Sweet in test
- 2. Glycol Sweet poisnous

3. Glycerol - Sweet (Glycus - Sweet)

(iii) On the basis of discovery

- 1. RMgx (Grigard Reagent)
- 2. R₂Zn (Frankland reagent)

(iv) On the basis of structure

S.No.	No. of Carbon atom	Word Root
(i)	1C	Meth
(ii)	2C	Eth
(iii)	3C	Prop
(iv)	4C	But
(v)	5C	Pent
(vi)	6C	Hex
(vii)	7C	Hept
(viii)	8C	Oct
(ix)	9C	Non
(x)	10C	Dec

Common Names for Hydrocarbon Derivatives

S.No.	Compound	Name
1.	R-X	Alkyl halide
2.	R – OH	Alkyl alcohol
3.	R – SH	Alkyl thio alcohol
4.	$R - NH_2$	Alkyl amine
5.	R-O-R	Dialkyl ether
6.	R-C-R	Dialkyl ketone
7.	R-NH-R	Dialkyl amine
8.	R-N-R R	Trialkyl amine
9.	R-O-R'	Alkyl alkyl' ether
10.	R-C-R'	Alkyl alkyl' ketone
11.	R-NH-R'	Alkyl alkyl' amine
12.	R-N-R' R"	Alkyl alkyl' alkyl" amine

R is termed as alkyl -

3

GROUPS

Atom or a group of atoms which possess any 'free valency' are called as **Groups**.

If their are two structure of same molecular formula then some prefix (n, iso, neo) are used two differentiate them.

Normal group: -

- (a) It is represented by 'n'.
- (b) Groups having no branch (Straight chain).
- (c) Free bond will come either on 1st carbon atom or on last carbon atom.

$$\begin{array}{ll} n-butyl & CH_3-CH_2-CH_2-CH_2-\\ n-propyl & CH_3-CH_2-CH_2- \end{array}$$

Iso group: -

When one methyl group is attached to the second last carbon of the straight carbon chain is named as iso group.

e.g. $\begin{array}{c} \mathsf{H_3C-CH-} \\ \mathsf{CH_3} \\ \mathsf{CH_3} \\ \mathsf{Isopropyl} \end{array} \quad \begin{array}{c} \mathsf{CH_3-CH-CH_2-} \\ \mathsf{CH_3} \\ \mathsf{CH_3} \\ \mathsf{Isopentyl} \\ \end{array} \quad \begin{array}{c} \mathsf{CH_3-CH-CH_2-} \\ \mathsf{CH_3} \\ \mathsf{CH_3} \\ \mathsf{Isopentyl} \\ \end{array}$

Exception:

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 - \text{C} - \text{CH}_2 - \text{C} + \text{CH}_2 - \\ \text{CH}_3 - \text{C} - \text{CH}_2 - \text{CH}_2 - \\ \text{CH}_3 - \text{CH}_3 - \text{C} - \text{CH}_2 - \text{CH}_2 - \\ \text{CH}_3 - \text{C} - \text{CH}_3 - \text{CH}_2 - \\ \text{CH}_3 - \text{C} - \text{CH}_3 - \text{CH}_2 - \\ \text{CH}_3 - \text{C} - \text{CH}_3 - \text{CH}_2 - \\ \text{CH}_3 - \text{C} - \text{CH}_3 - \text{CH}_2 - \\ \text{CH}_3 - \text{C} - \text{CH}_3 - \text{CH}_2 - \\ \text{CH}_3 - \text{C} - \text{CH}_3 - \text{CH}_2 - \\ \text{CH}_3 - \text{C} - \text{CH}_3 - \text{CH}_2 - \\ \text{CH}_3 - \text{C} - \text{CH}_3 - \text{CH}_2 - \\ \text{CH}_3 - \text{C} - \text{CH}_3 - \text{CH}_3 - \\ \text{CH}_3 - \text{C} - \text{CH}_3 - \text{CH}_3 - \\ \text{CH}_3 - \text{C} - \text{CH}_3 - \text{CH}_3 - \\ \text{CH}_3 - \text{C} - \text{CH}_3 - \text{CH}_3 - \\ \text{CH}_3 - \text{C} - \text{CH}_3 - \text{CH}_3 - \\ \text{CH}_3 - \text{C} - \\ \text{CH}_3 - \\ \text{CH}_$$

Neo group: -

- (a) When two methyl groups on second last carbon of a straight carbon chain is attached to other four carbon atom group is named as neo group.
- (b) It is represented by following structure -

$$C$$
 $C - C - C$ for eg. $C - C - C$ Neo penty

(c) There should be one 4° carbon and atleast three methyl group on 4° carbon.

NOTE: (Optically Active) = If all valency are attached to different atoms.

Amyl group : -

Secondary group: -

- (a) The carbon having free valency attached to two carbon is called secondary carbon.
- (b) It is represented by following structure. C C C C

eg. (i)
$$CH_3 - CH - CH_2 - CH_3$$
 (ii) $CH_3 - CH - CH_2 - CH_2 - CH_3$ (secondary butyl) (secondary pentyl)

Tertiary group: -

- (a) The carbon having free valency attached to three other carbon.
- (b) It is represented by following structure -

e.g. (i)CH
$$\begin{array}{c} CH_3 \\ -\mid -CH \\ 3 \end{array}$$

$$CH_3 - C-CH_2-CH_3$$

(Tertiary pentyl)

Alkyl group: -

When a hydrogen is removed from Alkane (saturated hydrocarbon) then alkyl group is formed. A bond is vacant on alkyl group on which any functional group may come.

alkane
$$\xrightarrow{-H}$$
 Alkyl - (C_nH_{2n+2}) (C_nH_{2n+1})

e.g.

(i)
$$CH_4 \xrightarrow{-H} CH_3 -$$

Methane Methy

(ii)
$$CH_3 - CH_3 \xrightarrow{-H} CH_3 - CH_2$$

Ethane eth

(iii)
$$CH_3$$
— CH_2 — CH_3 — CH_2 — CH_2 — n -Propyl
Propane

 CH_3 — CH_2 — CH_2 — n -Propyl

 CH_3 — CH — CH_3
iso-Propyl

(iv)
$$CH_3$$
– CH_2 – CH_2 – CH_3 – H

n-Butyl CH_3 –

n-Butyl CH_3 –

CH-CH₂– CH_3

Sec. Butyl

(v)
$$CH_3$$
— CH — CH_3
 CH_3

Alkynyl group -

alkyne
$$\longrightarrow$$
 Alkynyl -

$$(C_nH_{2n-2}) \qquad \quad (C_nH_{2n-3})$$

$$CH \equiv C - Ethynyl$$

$$CH \equiv C - CH_2 -$$

Propargyl (2-propynyl)

$$CH_3 - C \equiv C -$$

Propynyl (1-propynyl)

Alkylidene group –

Alkylene group

Position of double bond: –

In an unsaturated hydrocarbon if the position of double bond is on 1st or last carbon then it's prefix will be α (alpha) if it is on 2nd carbon it is termed as β (Beta) & the γ (gamma) & δ (delta) and so on.

eg.
$$H_2C = CH - CH_2 - CH_3 \alpha$$
 - butylene $H_3C - CH = CH - CH_3 \beta$ - butylene

$$H_3C - CH_2 - CH = CH_2 \alpha$$
 - butylene

$$H_2C = CH - CH_3 \text{ or } H_3C - CH = CH_2$$

(Both are same positions, propylene)

$$H_3C - C = CH$$

$$CH_3$$

$$CH_3$$
– CH_2 – CH = CH – CH_2 – CH_3 γ –hexylene CH_3 – CH_2 – CH_2 – CH = CH – CH_2 – CH_2 – CH_3 δ - octylene

COMMON - NAMING OF DIHALIDES

- When two same halogen atoms are attached to the same carbon such compounds are called (a) Gemdihalides.
- Common names of such compounds are alkylidene halides

Ethylidene chloride

$$\begin{array}{c} \text{CH}_3\text{-CH-CH} {\stackrel{I}{<}_I} \\ \text{CH}_3 \end{array}$$

Isobutylidene Iodide

Exception: Methylidene halide (wrong)

$$CH_3$$
- $CH < X$

Methylene halide (right)

(c) When two same halogen atoms are attached to adjacent carbon, these are called as vicinal dihalides. Common names of such compounds are alkylene halide.

eg CH₃ - CH - CH₂ Propylene Iodide

(d) When two same halogen atoms are attached at the two ends of a carbon chain its common naming will be polymethylene halide.

'poly' word indicates the number of -CH₂- groups.

$$-CH_2-$$
 2

3

. 5

Poly

tri

tetra penta Hexa

di

CH₂

₂ – CH₂ – CH₂ – CH₂ – CH

Trimethylene Iodide

Pentamethylene Bromide

Exception: -

 $CH_2 - X$ dimethylene halide (wrong)

 $CH_2 - X$ ethylene halide (right)

COMMON - NAMING OF DI-HYDROXY COMPOUNDS

(a) When two -OH groups are attached to adjacent carbon atoms they are termed as alkylene glycol.

 $\begin{array}{c} \text{OH} \\ \mid \\ \text{CH}_3 - \text{CH}_2 - \overset{}{\text{C}} - \text{CH}_2 - \text{OH} \\ \mid \\ \text{CH}_3 \end{array}$

Butylene glycol

Active amylene glycol

(b) When two –OH group are attached at the two ends of a carbon chain, these compounds are named as polymethylene glycol.

Poly \rightarrow Number of CH₂ groups.

eg. :
$$CH_2 - CH_2 - CH_2 - CH_2$$

OH OH

 $\mathrm{CH_2-CH_2-CH_2-CH_2-CH_2-CH_2}$ | | | OH

Tetra methylene glycol

Hexamethylene glycol

Exception:

 $CH_2 - OH$

Dimethylene glycol (wrong)

CH₂ – OH

Ethylene glycol

(right)

PROBLEMS

Make the structure of following organic compounds -

2.

- 1. Isopropylidene Bromide
- Active amylene Iodide
- 3. Isobutylene glycol
- 4. Isobutylene

5. Trimethylene glycol

ANSWERS

1.
$$CH_3-C$$
 Br CH_3-C CH_3-C CH_2-CH_3 CH_3-C CH_2-CH_3 CH_3-C CH_3-CH_3 $CH_3-CH_3-CH_3$ $CH_3-CH_3-CH_3$ $CH_3-CH_3-CH_3$ $CH_3-CH_3-CH_3$ $CH_3-CH_3-CH_3$ $CH_3-CH_3-CH_3$ $CH_3-CH_3-CH_3$ $CH_3-CH_3-CH_3$ $CH_3-CH_3-CH_3$ $CH_3-CH_3-CH_3-CH_3$

COMMON-NAMING OF THE FUNCTIONAL GROUP HAVING CARBON

(Common naming for Hydrocarbon derivatives)

S.No.	Functional group	Suffix
(i)	O -C - OH	-ic Acid
(ii)	O O	-ic anhydride
(iii)	O -C-O-R	-ate
(iv)	O -C - NH ₂	-amide
(v)	0 -C-X	-yl halide
(vi)	0 -C-H	-aldehyde
(vii)	$-C \equiv N$	-o-nitrile
(viii)	-N = C	-o-isonitrile

Prefix : -

1 Carbon \rightarrow Form-

 $2 \text{ Carbon} \rightarrow \text{Acet}$

3 Carbon → Propion-

4 Carbon \rightarrow Butyr $| \xrightarrow{\rightarrow}$ Normal -

5 Carbon \rightarrow

Valer
$$\rightarrow$$
 Normal-
Iso \rightarrow Secondary-
Tertiary- \rightarrow A C + double bond = Croton-

Formaldehyde

Acetic Acid

$$\begin{matrix} \mathsf{O} \\ \mathsf{II} \\ \mathsf{CH}_3 - \mathsf{CH}_2 - \mathsf{C} - \mathsf{CI} \end{matrix}$$

Propionyl chloride

Isobutyramide

Acetaldehyde

NOMENCLATURE OF ESTER

The group which is attached to the oxygen is written as alkyl & the remaining structure is named on the basis of Functional Group suffix.

(ii)

(iii) CH₃-C-O-H

Methyl formate

Acetic acid

 CH_3 CO CH_2 CH_3 CH_3 CH_3 CH_2 CH_3 CH_3

Methyl acetate

Ethyl acetate

Ethyl propionate

(vii)
$$CH_2 = CH - C - O - CH_2 - CH_3$$

Ethyl aerylate

(viii)
$$CH_3 - CH = CH - C - O - CH_3$$

Methyl crotonate

NOMENCLATURE OF ANHYDRIDE

Rule: - Add the total number of carbon atoms & divide it by 2, the substract will give you the number of C - atom. Now name it according to suffix use for anhydride.

$$\frac{\text{Total}}{2} = \text{Substract}$$

= Number of C atom

$$\frac{4}{2} = 2$$

$$\frac{\text{O O}}{\text{CH}_3-\text{C}-\text{O}-\text{C}-\text{CH}_3}$$
Acetic anhydride

$$\frac{6}{2} = 3$$

$$\begin{matrix} O & O \\ \parallel & \parallel \\ C_2H_5\text{--}C\text{--}O\text{--}C\text{--}C_2H_5 \end{matrix}$$

Propionic anhydride

If $R \neq R'$, You need not to find out substract.

eg.
$$CH_3-C-O-C-C_2H_5$$

Acetic propionic anhydride (right)

Propionic Acetic anhydride (wrong)

Divide it in two parts as above & name it by suffixing ic anhydride (alphabatically)

$$CH_3O$$
 CH_3
 CH_3
 CH_5
 CH_5

Butyric propionic anhydride

Isobutyric Secondary valeric anhydride

SOLVED EXAMPLE

Q.1 Which of the following is not a neo structure:-

Ans.

A carbon must be attached with four carbons. Sol.

Acryl aldehyde is -**Q.2**

(A) A saturated aldehyde

(B) An alkene

(C) A polymer

(D) An unsaturated aldehyde

Ans.

 $CH_2 = CH - CHO$ unsaturated aldehyde. Sol.

The common name of the compound $CH_2 = CH - C - CH = CH_2$ is - \parallel O Q.3

- (A) Divinyl ketone
- (B) Diallyl ketone
- (C) Both A and B
- (D) None

Ans.

 $CH_2 = CH - is$ called as vinyl group. Sol.

Q.4 Common name of CH₂=CH-CN is:

- (a) acrylonitrile
- (b) vinyl cyanide
- (c) allyl cyanide
- (d) allyl nitrile

- (A) a, b and d
- (B) a, and b
- (C) only b
- (D) a, b and c

Ans. В

Q.5 The number of possible alkyl groups of iso octane are -

- (A) 1
- (B) 3
- (C) 5
- (D) 6

В Ans.

 CH_3 $CH_3 - CH_2 - CH_3 - CH_3$ Sol. CH₃ CH_3 1 + 1 + 1 = 3

0.6 Write the common names of the following compounds

- 1. $CH_3 CH_2 CN$
- 2. $CH_3 CH CH_2 I$ ĊH₃
- CH₃
- 4. CH₃ CH CH₂ CH₂ Cl 5. CH₃ CH₂ CH CH₂
- CH_3 $CH_3 - CH_2 - CH_2 - C - NH_2$ ĊH₃

- 7. $CH_2 = CH SH$
- $CH_3 CH_2 CH_2 CH NH_2$ CH₃
- 9. $CH_3 CH_2 CH OH$ ĊΗ₂ CH_3

- 10. $CH_3 C CH_2$
- 11. $CH_3 - C = CH_2$ $\dot{N}H_2$

12. $CH \equiv C - CH_2 - Br$

ANSWERS

1. Ethyl cyanide

- 2. Isobutyl Iodide
- 3. Active amyl fluoride
- 4. Iso pentyl chloride
- 5. Active amyl alcohol
- 6. Tertiary hexyl amine
- 7. Vinyl thio alcohol
- 8. Active secondary amyl amine
- 9. Secondary amyl alcohol.
- 10. Neopentyl thio alcohol

- 11.Isopropenyl amine
- 12. Propargyl Bromide

MCQ

- **Q.1** Which of the following are secondary radicals:
 - (a) $CH_3 CH C_2H_5$ (b) $CH_2 = C CH_3$ (c) $CH_2 = CH CH_3$
- (d) $(CH_3)_2CH$ -

- (A) a, b, c,
- (B) a, d, c
- (C) b, c, d
- (D) a, b, d

- **Q.2** Common name of the structure $CH_2 - OH$ CH₂ -OH
 - (A) Ethylene Glycol (B) Ethene dialcohol (C) Glycerol
- (D) Ethylene alcohol
- Common name of the compound $CH_3 CH_2 C NH_2$ is -Q.3
 - (A) Acetamide
- (B) Propionamide
- (C) Butyramide
- (D) Acetic amide

- **Q.4** The structure of 2-butenyl radical is :
 - (A) $CH_3 CH_5 C_2H_5$

(C) (C) $CH_3 - CH_2 - C - CH_3$

- **Q.5** Which one is structure of Maleic acid

(B) HO - CH - COOH

- Common name of the structure $CH_3 C-O CH = CH_2$ is : **Q.6**
 - (A) vinyl acetate
- (B) acryle acetate
- (C) methyl acrylate
- (D) Vinyl ethanoate

- Which is the structural formula of isoprene
 - (A) CH₃ C = CH₂ĊH₃ (C) $CH_2 = C - CH = CH_2$

- CH_3 (B) $CH_2 = \dot{C} - CH = CH_2$
- (D) CH₃-CH=CH-CH₃

The number of gem dihalides possible with the molecular formula $C_2H_4X_2$ and $C_3H_6X_2$ is given **Q.8** by the set:

- (A) 1, 2
- (B) 2, 1
- (C) 2, 2
- (D) 1, 1

Q9 Common name of the compound C₆H₅CHO

- (A) Anisole
- (B) Benzaldehyde
- (C) Salicylaldehyde
- (D) None of these

ANSWERS

- Q.1(D)
- Q.2(A)
- Q.3(B)
- Q.4(B)
- Q.5(D)
- Q.6(A)
- Q.7(B)
- Q.8(A)

PROBLEMS

Write down the structures of the following -Q.1

- 1. Di allyl amine
- 3. Di isobutyl ether
- 5. Di Active amyl amine
- 7. Tri neopentyl amine

- Tri methyl amine 2.
- 4. Di isopentyl ketone
- Di normal propyl ether 6.
- Write down the common names of the following: **Q.2**

Ans.(1) 1. CH₂=CH-CH₂-NH-CH₂-CH=CH₂

 $5.\,\mathsf{CH}_{3}-\mathsf{CH}_{2}-\mathsf{CH}-\mathsf{CH}_{2}-\mathsf{NH}-\mathsf{CH}_{2}-\mathsf{CH}-\mathsf{CH}_{2}-\mathsf{CH}_{3}\\ \ 6.\,\,\,\,\mathsf{CH}_{3}-\mathsf{CH}_{2}-\,\mathsf{CH}_{2}-\,\mathsf{CH}_{2}-\mathsf{CH}_{2}-\,\mathsf{CH}_{2}-\,\mathsf{CH}_{3}\\$ CH_3

- Ans. (2) 1. Tertiary valero-isonitrile 2. Isobutyryl chloride
- 3. Secondary Valer amide

EXERCISE-1 (Exercise for JEE Mains)

[SINGLE CORRECT CHOICE TYPE]

Q.1	The hybrid state of C- ture are: CH ₂ =CH-C	atoms which are attache C≡ CH	ed to a single bond wi	th each other in	the following str
	(A) sp^2 , sp	(B) sp ³ , sp	(C) sp^2 , sp^2	(D) sp^2 , sp^2	
Q2	In the compound HC	≡С-СНСН=СН-СН	, the C_C bond is	the type of:	030113501
	$(A) sp - sp^2$	$\equiv \text{C-CH} - \text{CH=CH-CH}$ (B) $\text{sp}^3 - \text{sp}^3$	$(C) sp - sp^3$	(D) sp ² -s	sp ² 030110003]
Q3	The number of acetyn	ilic bonds in the structur	the are: $CH \equiv C - C - $ O	CH = CH – C ≡	N
	(A) 2	(B) 3	(C) 1	(D) 4 J2	030110074]
Q4	Which of the followin (A) Ethyl ethanoate	g is the first member of e (B) Methyl ethanoate	9	noate (D) Ethyl r	
Q5	Which of the follow	ing compound's prefix	'iso' is not correct	·	030110457]
	(A) Iso pentane	(B) Iso Hexane	(C) Iso butané	(D) Iso o	ctane (030110640]
Q.6	The group of heterocy (A) Phenol, Furane	rlic compounds is: (B) Furane, Thiophen	e (C) Thiophene, Pho		,Aniline
Q.7	The compound whic	h has one isopropyl gro	oup is:	[4	050110500]
	(A) 2,2,3,3-tetrameth	yl pentane	(B) 2,2-dimethyl p	entane	
	(C) 2,2,3-trimethyl p	entane	(D) 2-methyl pent	ane	
					030110120]
Q.8	Asubstance containir (A) Mesityl Oxide	ng an equal number of pr (B) Mesitylene	imary, secondaryand (C) Maleic acid	(D) Malor	nicacid 030111693]
Q9	How many secondar	ry carbon atoms does n	nethyl cyclopropane	have?	CH ₃
	(A) Nine	(B) One	(C) Two	(D) Three	
	,			[2	030110670]
Q.10	$(CH_3)_3C-CH = CH_2$ (A) 3, 3-Dimethyl-1- (C) 2, 2-Dimethyl-3-		(B) 2,2–Dimethyl- (D) 1,3–Dimethyl	-1-propene	
Q.11	IUPAC name of CH	=CH-CH ₂ -CH ₂ -C≡CH	H is:	[2	030110543]
•	(A) 1, 4–Hexenyne		(C) 1–Hexyne–5–	* *	exyene 030111749]

EXERCISE-2 (Exercise for JEE Advanced)

[REASONING TYPE]

These questions consists of two statements each, printed as Statement-I and Statement-II. While answering these Questions you are required to choose any one of the following four responses.

- (A) If both Statement-I & Statement-II are True & the Statement-II is a correct explanation of the Statement-I.
- (B) If both Statement-I & Statement-II are True but Statement-II is not a correct explanation of the Statement-I.
- (C) If Statement-I is True but the Statement-II is False.
- (D) If Statement-I is False but the Statement-II is True.
- Q.1 Statement-I: Pentane and 2-methyl pentane are homolo-gues.

 Statement-II: Pentane is a straight-chain alkane, while 2-methyl pentane is a branched-chain alkane.

 [2030113623]
- Q2 Statement-I: All the C atom o but-2-ene lie in one plane.
 Statement-II: Double-bond C atoms are sp²-hybridised. [2030113674]
- Q3 Statement-I: The IUPAC name of citric acid is 2-hydroxy-propane-1, 2, 3-tricarboxylic acid.

Statement-II: When an unbranched C atom is directly linked to more than two like-functional groups, then it is named as a derivative of the parent alkane which does not include the C atoms of the functional groups. [2030113725]

Q.4 Statement-I: Rochelle's salt is used as complexing agent in Tollens reagent.

Statement-II: Sodium potassium salt of tartaric acid is known as Rochelle's salt. The IUPAC name of

Q5 Statement-I: The IUPAC name of isoprene is 2-methyl buta-1, 3-diene.

Statement-II: Isoprene unit is a monomer of natural rubber. [2030113827]

[MULTIPLE CORRECT CHOICE TYPE]

- Q.6 Which of the following statements is/are wrong?
 - (A) C_nH_{2n} is the general formula of alkanes
 - (B) In homologous series, all members have the same physical properties
 - (C) IUPAC means International Union of Physics and Chemistry
 - (D) Butane contains two 1° C atoms and 2°C atom [2030113825]

EXERCISE-3 (Miscellaneous Exercise)

[2030113524]

Q.7

EXERCISE-4

SECTION-A (IIT JEE Previous Year's Questions)

Q.1 The IUPAC name of the compound having the formula is:

$$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{H_3C} - \operatorname{C} - \operatorname{CH} = \operatorname{CH_2} \\ | \\ \operatorname{CH_3} \end{array}$$

- (A) 3,3,3-trimethyl-1-propene
- (B) 1,1,1-trimethyl-2-propene

(C) 3,3-dimethyl-1-butene

(D) 2,2-dimethyl-3-butene

[JEE 1984]

[2030110004]

Write the IUPAC name of CH₃CH₂CH = CHCOOH Q.2

[JEE 1986] [2030110094]

- The IUPAC name of the compound CH₂=CH-CH(CH₂), is Q3
 - (A) 1,1-dimethyl-2-propene
- (B) 3-methyl-1-butene

(C) 2-vinyl propane

(D) None of the above

[JEE 1987]

[2030110144]

Q.4 The number of sigma and pi-bonds in 1-butene 3-yne are:

[JEE 1989]

- (A) 5 sigma and 5 pi
- (B) 7 sigma and 3 pi
- (C) 8 sigma and 2 pi (D) 6 sigma and 4 pi

[2030110299]

Q5 Write I.U.P.A.C name of following

Me = methyl group

[JEE 1990]

[JEE 1991]

[2030110220]

Write IUPAC name of succinic acid.

[JEE 1994]

[2030110190]

- **Q.7** The IUPAC name of C₆H₅COCl is
 - (A) Benzoyl chloride

- (B) Benzene chloro ketone
- (C) Benzene carbonyl chloride
- (D) Chlorophenyl ketone [JEE 2006]

[2030110303]

Q8 The IUPAC name of the following compound is

[JEE 2009]

- (A) 4-Bromo-3-cyanophenol
- (B) 2-Bromo-5-hydroxybenzonitrile
- (C) 2-Cyano-4-hydroxybromobenzene
- (D) 6-Bromo-3-hydroxybenzonitrile

[2030110175]

Q9 The correct structure of ethylenediaminetetraacetic acid (EDTA) is

[IIT-JEE 2010]

$$(C) \begin{array}{c} \text{HOOC-CH}_2 \\ \text{N-CH}_2\text{-CH}_2\text{-N} \\ \text{CH}_2\text{-COOH} \end{array}$$

[2030110077]

SECTION-B (AIEEE Previous Year's Questions)

Q.10 The correct decreasing order of priority for the functional groups of organic compounds in the IUPAC system of nomenclature is [AIEEE 2008]

- (A) –SO₃H, –COOH, –CONH₂, –CHO
- (B) -CHO, -COOH, -SO $_3$ H, -CONH $_2$
- (C) –CONH₂, –CHO, –SO₃H, –COOH
- (D) -COOH, -SO₃H, -CONH₂, -CHO

[2030113578]

ANSWER KEY

EXERCISE-1

Q.1	(A)	Q.2	(C)	Q.3	(C)	Q.4	(C)
Q.5	(D)	Q.6	(B)	Q.7	(D)	Q.8	(B)
Q.9	(C)	Q.10	(A)	Q.11	(B)	Q.12	(D)
Q.13	(A)	Q.14	(B)	Q.15	(A)	Q.16	(B)
Q.17	(B)	Q.18	(D)	Q.19	(C)	Q.20	(B)
Q.21	(D)	Q.22	(C)	Q.23	(C)	Q.24	(B)
Q.25	(B)	Q.26	(B)	Q.27	(D)	Q.28	(A)
Q.29	(B)	Q.30	(D)	Q.31	(C)	Q.32	(C)
Q.33	(C)	Q.34	(A)	Q.35	(D)	Q.36	(D)
Q.37	(C)	Q.38	(B)	Q.39	(D)	Q.40	(B)
Q.41	(B)	Q.42	(C)	Q.43	(C)	Q.44	(B)
Q.45	(D)	Q.46	(A)	Q.47	(B)	Q.48	(A)
0.49	(D)	0.50	(B)	-			. /

EXERCISE-2

Q.1	(B)	$\mathbf{Q.2}$	(A)	Q.3	(A)	Q.4	(B)
Q.5	(B)	Q.6	(A), (B), (C)	Q.7	(A), (B), (C)	Q.8	(A), (B), (C)
Q.9	(C), (D)	Q.10	(A), (B) , (C)	, (D)		Q.11	(A), (B), (C), (D)
Q.12	(A), (B), (C), (D)			Q.13	(A), (B), (D)		
Q.14	(A), (B), (C), (D)			Q.15	(A), (B), (C),	(D)	
Q.16	[(A) Q; (B) R; (C) S;	(D) P]		Q.17	[(A) R; (B) P]	; (C) S;	(D) Q]
Q.18	[(A) R, Q; (B) P; (Q)	S]		Q.19	[(A) Q, R; (B) R, S; ((C) P]
Q.20	[(A) R; (B) S; (C) P;	(D) Q; (E) U; (F) T]				

EXERCISE-4

SECTION-A

Q.1 (C) Q.3 (B) Q.4 (B) Q.7 (C) Q.8 (B) Q.9 (C)

SECTION-B

Q.10 (D)

HINTS / SOLUTION

EXERCISE-1

Q.1
$$\begin{array}{c} H \\ C = C \xrightarrow{\sigma} H \\ sp \leftrightarrow C \xrightarrow{\overline{\sigma}} C - H \end{array}$$

Q.3
$$H - C \equiv C - C - C - CH = CH - C \equiv N$$
Acetynilic group

$$\mathbf{Q.4} \qquad \mathbf{H} - \mathbf{C} - \mathbf{O} - \mathbf{CH}_{3}$$

Q.5
$$CH_3 - C - CH_2 - CH - CH_3$$
 Not Iso group

Q.8
$$\begin{array}{cccc}
1^{\circ} & 2^{\circ} & 1^{\circ} & 1^{\circ} - \text{Carbon} \Rightarrow 3 \\
2^{\circ} & 2^{\circ} - \text{Carbon} \Rightarrow 3 \\
2^{\circ} & 3^{\circ} - \text{Carbon} \Rightarrow 3
\end{array}$$

Q.10
$$CH_3$$

 $H C - C - CH = CH$
 $A = CH_3$
 CH_3
3,3-dimethyl-1-butene

Q.11
$$H_2C = CH - CH_2 - CH_2 - C = CH$$

1 2 3 4 5 6
1-Hexene-5-yne

Q.13 Compound having hetero -atom (as O, N, S etc) in cycle are known as heterocyclic compound.

3, 5-diethyl-4,5-dimethyl -5-[1-methyl ethyl] hept-3-ene

Q.17 Ethyl
$$CH_3$$
 CH_2 CH_3 $CH_$

4, 4-dimethylpent-1-yne

Q.19
$$H C - C = C - \stackrel{CH_3}{\updownarrow} - CH$$

 $\stackrel{?}{\downarrow} 2 \quad 3 \quad \stackrel{4}{\downarrow} \quad \stackrel{5}{\overset{3}} - CH_3$

Q.23
$$gp^{3} gp^{3} sp^{3} sp$$
 sp sp $mathred Mathrel M$

Q.26
$$H_3C - CH_2 - CH - O - CH_2 - CH_3$$
1-Ethoxy-1-propanamine (\square)

not 1-Amino-1-Ethyoxypropane (×)

4-Ethyl-4, 5-dimethyldecane

Q.28
$$C_3H_6Br_2$$
 $C_3H_6Br_2$

Terminal gem dibromide

 CH_3-C-CH_3
 Rr

Non-terminalgem dibromide

$$Q.18 H3C - CH = CH - C \equiv CH$$
Pent-3-ene-1-yne

Q.21
$$H_{2C}^{1}$$
 CH_{2C}^{1} CH_{2C}^{1} CH_{2C}^{1} CH_{2C}^{1} CH_{2C}^{1} CH_{2C}^{1}

DR COLLEGE OF PHARMACY